Search results
Results from the WOW.Com Content Network
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed.
During the 17th century, Nicolas Steno was the first to observe and propose a number of basic principles of historical geology, including three key stratigraphic principles: the law of superposition, the principle of original horizontality, and the principle of lateral continuity.
Oceanic and continental crusts are, at the present day, produced and maintained through plate tectonic processes. However, the same mechanisms are unlikely to have produced the crustal dichotomy of the early lithosphere. This is thought to be true on the basis that sections of the thin, low density continental lithosphere thought to have ...
The theory of continental drift has since been validated and incorporated into the science of plate tectonics, which studies the movement of the continents as they ride on plates of the Earth's lithosphere. [2] The speculation that continents might have "drifted" was first put forward by Abraham Ortelius in 1596.
The model displayed remnants of submerged plates located under oceans and in the middle of continents, which—according to our current understanding of the plate tectonic cycle—are all too far ...
The Earth of the early Archean may have had a different tectonic style. It is widely believed that the early Earth was dominated by vertical tectonic processes, such as stagnant lid , [ 19 ] [ 20 ] heat-pipe , [ 21 ] or sagduction , [ 22 ] [ 23 ] [ 24 ] which eventually transitioned to plate tectonics during the planet's mid-stage evolution.
Subduction is the density-driven process by which one tectonic plate moves under another and sinks into the mantle at a convergent boundary.Gravitational pull from dense slabs provides approximately 90% of the driving force for plate tectonics, [2] and consequently subduction is crucial in changing the Earth's layout, guiding its thermal evolution [3] and building its compositional structure. [1]