Search results
Results from the WOW.Com Content Network
The following article is a comparison of aerobic and anaerobic digestion. In both aerobic and anaerobic systems the growing and reproducing microorganisms within them require a source of elemental oxygen to survive. [1] In an anaerobic system there is an absence of gaseous oxygen. In an anaerobic digester, gaseous oxygen is prevented from ...
Anaerobic digestion is particularly suited to organic material, and is commonly used for industrial effluent, wastewater and sewage sludge treatment. [77] Anaerobic digestion, a simple process, can greatly reduce the amount of organic matter which might otherwise be destined to be dumped at sea, [78] dumped in landfills, or burnt in ...
Glycolysis can be either an aerobic or anaerobic process. When oxygen is present, glycolysis continues along the aerobic respiration pathway. If oxygen is not present, then ATP production is restricted to anaerobic respiration. The location where glycolysis, aerobic or anaerobic, occurs is in the cytosol of the cell.
The origin of aerobic fermentation, or the first step, in Saccharomyces Crabtree-positive yeasts likely occurred in the interval between the ability to grow under anaerobic conditions, horizontal transfer of anaerobic DHODase (encoded by URA1 with bacteria), and the loss of respiratory chain Complex I. [9] A more pronounced Crabtree effect, the ...
The organic or inorganic substances (e.g., oxygen) used as electron acceptors needed in the catabolic processes of aerobic or anaerobic respiration and fermentation are not taken into account here. For example, plants are lithotrophs because they use water as their electron donor for the electron transport chain across the thylakoid membrane.
Frequently referenced, but often misunderstood, the difference between the terms "aerobic" and "anaerobic" seems small but is actually big (and important).
Pyruvate from glycolysis [17] undergoes a simple redox reaction, forming lactic acid. [18] [19] Overall, one molecule of glucose (or any six-carbon sugar) is converted to two molecules of lactic acid: C 6 H 12 O 6 → 2 CH 3 CHOHCOOH. It occurs in the muscles of animals when they need energy faster than the blood can supply oxygen.
Those processes convert energy into adenosine triphosphate (ATP), which is the form suitable for muscular activity. There are two main forms of synthesis of ATP: aerobic, which uses oxygen from the bloodstream, and anaerobic, which does not. Bioenergetics is the field of biology that studies bioenergetic systems.