Search results
Results from the WOW.Com Content Network
There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.
Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.
Algorithms from P to NP, volume 1 - Design and Efficiency. Redwood City, California: Benjamin/Cummings Publishing Company, Inc. Discusses intractability of problems with algorithms having exponential performance in Chapter 2, "Mathematical techniques for the analysis of algorithms." Weinberger, Shmuel (2005). Computers, rigidity, and moduli ...
Suppose, for concreteness, that we have an algorithm for examining a program p and determining infallibly whether p is an implementation of the squaring function, which takes an integer d and returns d 2. The proof works just as well if we have an algorithm for deciding any other non-trivial property of program behavior (i.e. a semantic and non ...
A multiple constrained problem could consider both the weight and volume of the books. (Solution: if any number of each book is available, then three yellow books and three grey books; if only the shown books are available, then all except for the green book.) The knapsack problem is the following problem in combinatorial optimization:
Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs.
Backtracking search is a general algorithm for finding all (or some) solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.