Search results
Results from the WOW.Com Content Network
While the use of the affix mono-is rarely necessary in organic chemistry, it is often essential in inorganic chemistry to avoid ambiguity: carbon oxide could refer to either carbon monoxide or carbon dioxide. In forming compound affixes, the numeral one is represented by the term hen-except when it forms part of the number eleven (undeca-): hence
Although GC was a wonderful technique for analyzing inorganic compounds, less than 20% of organic molecules are able to be separated using this technique. It was Richard Synge, who in 1952 won the Nobel Prize in Chemistry for his work with partition chromatography, who applied the theoretical knowledge gained from his work in GC to LC. From ...
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. [ 1 ]
Gas chromatography (GC): Older columns were made of glass or metal packed with particles of a solid stationary phase. More recently, narrower diameter (capillary) columns have been made using fused silica coated on the inside with a film of the stationary phase material.
Pyrolysis–gas chromatography–mass spectrometry is a method of chemical analysis in which the sample is heated to decomposition to produce smaller molecules that are separated by gas chromatography and detected using mass spectrometry. Pyrolysis is the thermal decomposition of materials in an inert atmosphere or a vacuum.
Also acid ionization constant or acidity constant. A quantitative measure of the strength of an acid in solution expressed as an equilibrium constant for a chemical dissociation reaction in the context of acid-base reactions. It is often given as its base-10 cologarithm, p K a. acid–base extraction A chemical reaction in which chemical species are separated from other acids and bases. acid ...
GC–MS is used for the analysis of unknown organic compound mixtures. One critical use of this technology is the use of GC–MS to determine the composition of bio-oils processed from raw biomass. [29] GC–MS is also utilized in the identification of continuous phase component in a smart material, magnetorheological (MR) fluid. [30]
Gas chromatography-mass spectrometry (GC-MS) is a two-dimensional chromatography technique that combines the separation technique of gas chromatography with the identification technique of mass spectrometry. GC-MS is the single most important analytical tool for the analysis of volatile and semi-volatile organic compounds in complex mixtures. [7]