enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    This has the convenient implication for 2 × 2 and 3 × 3 rotation matrices that the trace reveals the angle of rotation, θ, in the two-dimensional space (or subspace). For a 2 × 2 matrix the trace is 2 cos θ, and for a 3 × 3 matrix it is 1 + 2 cos θ. In the three-dimensional case, the subspace consists of all vectors perpendicular to the ...

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  6. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    The space of spinors is evidently acted upon by complex 2×2 matrices. As shown above, the product of two reflections in a pair of unit vectors defines a 2×2 matrix whose action on euclidean vectors is a rotation. So there is an action of rotations on spinors. However, there is one important caveat: the factorization of a rotation is not unique.

  7. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    By referring collectively to e 1, e 2, e 3 as the e basis and to n 1, n 2, n 3 as the n basis, the matrix containing all the c jk is known as the "transformation matrix from e to n", or the "rotation matrix from e to n" (because it can be imagined as the "rotation" of a vector from one basis to another), or the "direction cosine matrix from e ...

  8. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    This may be seen by differentiating the orthogonality condition, A T A = I, A ∈ SO(3). [nb 2] The Lie bracket of two elements of () is, as for the Lie algebra of every matrix group, given by the matrix commutator, [A 1, A 2] = A 1 A 2 − A 2 A 1, which is again a skew-symmetric matrix

  9. Gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Gamma_matrices

    The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation {,} = + = ,where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix.