enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    They claimed that perceptron research waned in the 1970s not because of their book, but because of inherent problems: no perceptron learning machines could perform credit assignment any better than Rosenblatt's perceptron learning rule, and perceptrons cannot represent the knowledge required for solving certain problems. [29]

  3. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    The perceptron learning rule originates from the Hebbian assumption, and was used by Frank Rosenblatt in his perceptron in 1958. The net is passed to the activation function and the function's output is used for adjusting the weights. The learning signal is the difference between the desired response and the actual response of a neuron.

  4. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In separable problems, perceptron training can also aim at finding the largest separating margin between the classes. The so-called perceptron of optimal stability can be determined by means of iterative training and optimization schemes, such as the Min-Over algorithm (Krauth and Mezard, 1987) [38] or the AdaTron (Anlauf and Biehl, 1989)). [44]

  5. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    The Mark I Perceptron, from its operator's manual The Mark I Perceptron was a pioneering supervised image classification learning system developed by Frank Rosenblatt in 1958. It was the first implementation of an Artificial Intelligence (AI) machine.

  6. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    It was designed to solve the vanishing gradient problem. LSTM is normally augmented by recurrent gates called "forget gates". [54] LSTM prevents backpropagated errors from vanishing or exploding. [55] Instead, errors can flow backward through unlimited numbers of virtual layers unfolded in space.

  7. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  8. Gating mechanism - Wikipedia

    en.wikipedia.org/wiki/Gating_mechanism

    Compared to the LSTM, the GRU has just two gates: a reset gate and an update gate. GRU also merges the cell state and hidden state. The reset gate roughly corresponds to the forget gate, and the update gate roughly corresponds to the input gate. The output gate is removed. There are several variants of GRU. One particular variant has these ...

  9. ADALINE - Wikipedia

    en.wikipedia.org/wiki/ADALINE

    Learning inside a single-layer ADALINE Photo of an ADALINE machine, with hand-adjustable weights implemented by rheostats Schematic of a single ADALINE unit [1]. ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is an early single-layer artificial neural network and the name of the physical device that implemented it.