Search results
Results from the WOW.Com Content Network
Natural uranium is made weapons-grade through isotopic enrichment. Initially only about 0.7% of it is fissile U-235, with the rest being almost entirely uranium-238 (U-238). They are separated by their differing masses. Highly enriched uranium is considered weapons-grade when it has been enriched to about 90% U-235. [citation needed]
Uranium-235 (235 U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide. Uranium-235 has a half-life of 703.8 million years.
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.
Enriching uranium means increasing the percentage of uranium-235, the isotope of uranium that can be used in nuclear fission. Show comments. Advertisement. Advertisement. In Other News.
Uranium-238 will fission when struck by a neutron with 1.6 megaelectronvolts (0.26 pJ), and about half the neutrons produced by the fission of uranium-235 will exceed this threshold. However, a fast neutron striking a uranium-238 nucleus is eight times as likely to be inelastically scattered as to produce a fission, and when it does so, it is ...
Uranium appears in nature primarily in two isotopes: uranium-238 and uranium-235. When the nucleus of uranium-235 absorbs a neutron, it undergoes nuclear fission, releasing energy and, on average, 2.5 neutrons. Because uranium-235 releases more neutrons than it absorbs, it can support a chain reaction and so is described as fissile. Uranium-238 ...
As a result, fissile materials (such as uranium-235) are a subset of fissionable materials. Uranium-235 fissions with low-energy thermal neutrons because the binding energy resulting from the absorption of a neutron is greater than the critical energy required for fission; therefore uranium-235 is fissile. By contrast, the binding energy ...
Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years. [1]