Search results
Results from the WOW.Com Content Network
Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values. For example, if s is a Series, s['a'] will return the data point at index a. Unlike dictionary keys, index values are not guaranteed to be unique. If a Series uses the index value a for multiple data points, then s['a'] will ...
IWE combines Word2vec with a semantic dictionary mapping technique to tackle the major challenges of information extraction from clinical texts, which include ambiguity of free text narrative style, lexical variations, use of ungrammatical and telegraphic phases, arbitrary ordering of words, and frequent appearance of abbreviations and acronyms ...
Here the index can be computed as some range of bits of the hash function. On the other hand, some hashing algorithms prefer to have the size be a prime number. [18] For open addressing schemes, the hash function should also avoid clustering, the mapping of two or more keys to consecutive slots. Such clustering may cause the lookup cost to ...
A dictionary coder, also sometimes known as a substitution coder, is a class of lossless data compression algorithms which operate by searching for matches between the text to be compressed and a set of strings contained in a data structure (called the 'dictionary') maintained by the encoder. When the encoder finds such a match, it substitutes ...
The terms data dictionary and data repository indicate a more general software utility than a catalogue. A catalogue is closely coupled with the DBMS software. It provides the information stored in it to the user and the DBA, but it is mainly accessed by the various software modules of the DBMS itself, such as DDL and DML compilers, the query optimiser, the transaction processor, report ...
The purpose of an inverted index is to allow fast full-text searches, at a cost of increased processing when a document is added to the database. [2] The inverted file may be the database file itself, rather than its index. It is the most popular data structure used in document retrieval systems, [3] used on a large scale for example in search ...
Sparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims to find a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms, and they compose a dictionary.
CANopen devices must have an object dictionary, which is used for configuration and communication with the device. An entry in the object dictionary is defined by: Index, the 16-bit address of the object in the dictionary; Object name (Object Type/Size), a symbolic type of the object in the entry, such as an array, record, or simple variable