Search results
Results from the WOW.Com Content Network
The momentum transfer plays an important role in the evaluation of neutron, X-ray, and electron diffraction for the investigation of condensed matter. Laue-Bragg diffraction occurs on the atomic crystal lattice, conserves the wave energy and thus is called elastic scattering, where the wave numbers final and incident particles, and , respectively, are equal and just the direction changes by a ...
In physics, and especially scattering theory, the momentum-transfer cross section (sometimes known as the momentum-transport cross section [1]) is an effective scattering cross section useful for describing the average momentum transferred from a particle when it collides with a target. Essentially, it contains all the information about a ...
The molecular transfer equations of Newton's law for fluid momentum, Fourier's law for heat, and Fick's law for mass are very similar. One can convert from one transport coefficient to another in order to compare all three different transport phenomena. [8]
Electromigration is the transport of material caused by the gradual movement of the ions in a conductor due to the momentum transfer between conducting electrons and diffusing metal atoms. The effect is important in applications where high direct current densities are used, such as in microelectronics and related structures.
The phrase "momentum diffusion" can also refer to the diffusion of the probability for a single particle to have a particular momentum. [2] In this case, it is the probability distribution function that diffuses in momentum space, rather than the (conserved) quantity of momentum that diffuses among many particles.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This equation permits the prediction of an unknown transfer coefficient when one of the other coefficients is known. The analogy is valid for fully developed turbulent flow in conduits with Re > 10000, 0.7 < Pr < 160, and tubes where L/d > 60 (the same constraints as the Sieder–Tate correlation). The wider range of data can be correlated by ...
This description is essentially one-dimensional: DIS provides us with the parton momentum distributions in term of the single variable x, which is interpreted in the infinite momentum limit (the Bjorken limit) as the fraction of the nucleon momentum carried by the struck partons. Therefore, from DIS we only learn about the relative longitudinal ...