enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Darcy friction factor is also known as the Darcy–Weisbach friction factor, resistance coefficient or simply friction factor; by definition it is four times larger than the Fanning friction factor. [1]

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    If the value of the friction factor is 0.064, then the Darcy friction factor is plotted in the Moody diagram. Note that the nonzero digits in 0.064 are the numerator in the formula for the laminar Darcy friction factor: f D = ⁠ 64 / Re ⁠. If the value of the friction factor is 0.016, then the Fanning friction factor is plotted in the Moody ...

  4. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...

  5. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    The friction coefficient is an empirical (experimentally measured) structural property that depends only on various aspects of the contacting materials, such as surface roughness. The coefficient of friction is not a function of mass or volume. For instance, a large aluminum block has the same coefficient of friction as a small aluminum block.

  6. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Assuming the Fanning friction factor is a constant along the duct wall, the differential equation can be solved easily. [ 2 ] [ 3 ] One must keep in mind, however, that the value of the Fanning friction factor can be difficult to determine for supersonic and especially hypersonic flow velocities.

  7. Frictional contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Frictional_contact_mechanics

    This theory is exact for the situation of an infinite friction coefficient in which case the slip area vanishes, and is approximative for non-vanishing creepages. It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact.

  8. Wear coefficient - Wikipedia

    en.wikipedia.org/wiki/Wear_coefficient

    As can be estimated from weight loss and the density , the wear coefficient can also be expressed as: [2] K = 3 H W P L ρ {\displaystyle K={\frac {3HW}{PL\rho }}} As the standard method uses the total volume loss and the total sliding distance, there is a need to define the net steady-state wear coefficient:

  9. Roughness length - Wikipedia

    en.wikipedia.org/wiki/Roughness_length

    For example, in classical mechanics the coefficient of friction is commonly used to measure the roughness of a surface as it relates to the force exerted on another contacted object. And, in fluid dynamics, hydraulic roughness is a measure of the resistance water experiences when flowing over land or through a channel.