enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    If the force is perpendicular to the displacement vector r, the moment arm will be equal to the distance to the centre, and torque will be a maximum for the given force. The equation for the magnitude of a torque, arising from a perpendicular force: = ().

  3. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The angular momentum equation can be used to relate the moment of the resultant force on a body about an axis (sometimes called torque), and the rate of rotation about that axis. Torque and angular momentum are related according to =, just as F = dp/dt in linear dynamics. In the absence of an external torque, the angular momentum of a body ...

  4. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  5. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    where p i = momentum of particle i, F ij = force on particle i by particle j, and F E = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself. Torque. Torque τ is also called moment of a force, because it is the rotational analogue to force: [8]

  6. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    From the foregoing, you can see that the time domain equations are simply scaled forms of the angle domain equations: is unscaled, ′ is scaled by ω, and ″ is scaled by ω². To convert the angle domain equations to time domain, first replace A with ωt , and then scale for angular velocity as follows: multiply x ′ {\displaystyle x'} by ...

  7. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    A body's moment of inertia about a particular axis depends both on the mass and its distribution relative to the axis, increasing with mass & distance from the axis. It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation. The moment ...

  8. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Torque can be defined as the rate of change of angular momentum, analogous to force. The net external torque on any system is always equal to the total torque on the system; the sum of all internal torques of any system is always 0 (this is the rotational analogue of Newton's third law of motion).

  9. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.