Search results
Results from the WOW.Com Content Network
C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.
2) = 1 / 2 n(n − 1) dimensions, and allows one to interpret the differential of a 1-vector field as its infinitesimal rotations. Only in 3 dimensions (or trivially in 0 dimensions) we have n = 1 / 2 n(n − 1), which is the most elegant and common case. In 2 dimensions the curl of a vector field is not a vector field but a ...
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...
A graph with degeneracy d is necessarily (d + 1)-biclique-free.Additionally, any nowhere dense family of graphs is biclique-free. More generally, if there exists an n-vertex graph that is not a 1-shallow minor of any graph in the family, then the family must be n-biclique-free, because all n-vertex graphs are 1-shallow minors of K n,n.
A graph with cyclomatic number is also called a r-almost-tree, because only r edges need to be removed from the graph to make it into a tree or forest. A 1-almost-tree is a near-tree: a connected near-tree is a pseudotree, a cycle with a (possibly trivial) tree rooted at each vertex. [9] Several authors have studied the parameterized complexity ...
Erdős on Graphs: His Legacy of Unsolved Problems is a book on unsolved problems in mathematics collected by Paul Erdős in the area of graph theory. It was written by Fan Chung and Ronald Graham, based on a 1997 survey paper by Chung, [1] and published in 1998 by A K Peters. A softcover edition with some updates and corrections followed in 1999.
The dotted line in red represents a cut with three crossing edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.
Here the final equality follows by the gradient theorem, since the function f(x) = | x | α+1 is differentiable on R n if α ≥ 1. If α < 1 then this equality will still hold in most cases, but caution must be taken if γ passes through or encloses the origin, because the integrand vector field | x | α − 1 x will fail to be defined there.