enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lanthanide contraction - Wikipedia

    en.wikipedia.org/wiki/Lanthanide_contraction

    The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right.

  3. Lanthanide - Wikipedia

    en.wikipedia.org/wiki/Lanthanide

    All of the lanthanides form Ln 2 Q 3 (Q= S, Se, Te). [18] The sesquisulfides can be produced by reaction of the elements or (with the exception of Eu 2 S 3) sulfidizing the oxide (Ln 2 O 3) with H 2 S. [18] The sesquisulfides, Ln 2 S 3 generally lose sulfur when heated and can form a range of compositions between Ln 2 S 3 and Ln 3 S 4.

  4. Molar ionization energies of the elements - Wikipedia

    en.wikipedia.org/wiki/Molar_ionization_energies...

    This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms. The second, third, etc., molar ionization energy applies to the further removal of an electron from a singly, doubly, etc., charged ion.

  5. Lanthanide compounds - Wikipedia

    en.wikipedia.org/wiki/Lanthanide_compounds

    All of the lanthanides form Ln 2 Q 3 (Q= S, Se, Te). [8] The sesquisulfides can be produced by reaction of the elements or (with the exception of Eu 2 S 3) sulfidizing the oxide (Ln 2 O 3) with H 2 S. [8] The sesquisulfides, Ln 2 S 3 generally lose sulfur when heated and can form a range of compositions between Ln 2 S 3 and Ln 3 S 4.

  6. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  7. Hill reaction - Wikipedia

    en.wikipedia.org/wiki/Hill_reaction

    Studies of light intensities revealed that the effect was largely on the light-independent steps of the Hill reaction. These observations are explained in terms of a proposed method in which phosphate esterifies during electron transport reactions, reducing ferricyanide, while the rate of electron transport is limited by the rate of ...

  8. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.

  9. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.