enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton's theorem of revolving orbits was his first attempt to understand apsidal precession quantitatively. According to this theorem, the addition of a particular type of central force—the inverse-cube force—can produce a rotating orbit; the angular speed is multiplied by a factor k , whereas the radial motion is left unchanged.

  3. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    The formula is dimensionless, describing a ratio true for all units of measure applied uniformly across the formula. If the numerical value a {\displaystyle \mathbf {a} } is measured in meters per second squared, then the numerical values v {\displaystyle v\,} will be in meters per second, r {\displaystyle r\,} in meters, and ω {\displaystyle ...

  4. Apsidal precession - Wikipedia

    en.wikipedia.org/wiki/Apsidal_precession

    Newton derived an early theorem which attempted to explain apsidal precession. This theorem is historically notable, but it was never widely used and it proposed forces which have been found not to exist, making the theorem invalid. This theorem of revolving orbits remained largely unknown and undeveloped for over three centuries until 1995. [14]

  5. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Taking the square root of both sides and expanding using the binomial theorem yields the formula = (+) Multiplying by the period T of one revolution gives the precession of the orbit per revolution = () = where we have used ω φ T = 2 π and the definition of the length-scale a.

  7. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The circular restricted three-body problem [clarification needed] is a valid approximation of elliptical orbits found in the Solar System, [citation needed] and this can be visualized as a combination of the potentials due to the gravity of the two primary bodies along with the centrifugal effect from their rotation (Coriolis effects are ...

  8. File:Newton revolving orbit diagram.svg - Wikipedia

    en.wikipedia.org/wiki/File:Newton_revolving...

    English: Diagram illustrating Newton's derivation of his theorem of revolving orbits. Date: 23 August 2008: Source: Own work: ... Newton's theorem of revolving orbits;

  9. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.