Search results
Results from the WOW.Com Content Network
The legs of the two right triangles with hypotenuse on the ray defining the angles are of length √ 2 times the circular and hyperbolic functions. The hyperbolic angle is an invariant measure with respect to the squeeze mapping, just as the circular angle is invariant under rotation. [23] The Gudermannian function gives a direct relationship ...
Differentiable function – Mathematical function whose derivative exists; Differential of a function – Notion in calculus; Differentiation of integrals – Problem in mathematics; Differentiation under the integral sign – Differentiation under the integral sign formula; Hyperbolic functions – Collective name of 6 mathematical functions
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin ′ ( a ) = cos( a ), meaning that the rate of change of sin( x ) at a particular angle x = a is given ...
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
The Gudermannian function is a sigmoid function, and as such is sometimes used as an activation function in machine learning. The (scaled and shifted) Gudermannian function is the cumulative distribution function of the hyperbolic secant distribution. A function based on the Gudermannian provides a good model for the shape of spiral galaxy arms ...
For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions. The ISO 80000-2 standard uses the prefix "ar-" rather than "arc-" for the inverse hyperbolic functions; we do that here.
The argument to the hyperbolic functions is a hyperbolic angle measure. In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant ...