Search results
Results from the WOW.Com Content Network
A simplicial set is called a Kan complex if the map from {}, the one-point simplicial set, is a Kan fibration. In the model category for simplicial sets, { ∗ } {\displaystyle \{*\}} is the terminal object and so a Kan complex is exactly the same as a fibrant object .
An example of simplicial complex, and the corresponding simplex tree data structure. Notice the two lowest nodes have a path of 4 to the node, indicating the 2 3-dimensional simplexes composed of 4 vertices each. In topological data analysis, a simplex tree is a type of trie used to represent efficiently any general simplicial complex.
Dynamic set structures typically add: create(): creates a new, initially empty set structure. create_with_capacity(n): creates a new set structure, initially empty but capable of holding up to n elements. add(S,x): adds the element x to S, if it is not present already. remove(S, x): removes the element x from S, if it is present.
For a simplicial complex embedded in a k-dimensional space, the k-faces are sometimes referred to as its cells. The term cell is sometimes used in a broader sense to denote a set homeomorphic to a simplex, leading to the definition of cell complex. The underlying space, sometimes called the carrier of a simplicial complex, is the union of
The nested set model is a technique for representing nested set collections (also known as trees or hierarchies) in relational databases. It is based on Nested Intervals, that "are immune to hierarchy reorganization problem, and allow answering ancestor path hierarchical queries algorithmically — without accessing the stored hierarchy relation".
is the smallest closed set containing at least three points which is completely invariant under f. is the closure of the set of repelling periodic points. For all but at most two points , the Julia set is the set of limit points of the full backwards orbit (). (This suggests a simple algorithm for plotting Julia sets, see below.)
A mosaic made by matching Julia sets to their values of c on the complex plane. The Mandelbrot set is a map of connected Julia sets. As a consequence of the definition of the Mandelbrot set, there is a close correspondence between the geometry of the Mandelbrot set at a given point and the structure of the corresponding Julia set. For instance ...
A (max) heap is a tree-based data structure which satisfies the heap property: for any given node C, if P is a parent node of C, then the key (the value) of P is greater than or equal to the key of C. In addition to the operations of an abstract priority queue, the following table lists the complexity of two additional logical operations: