Search results
Results from the WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
This support comes in degrees: strong arguments make the conclusion very likely, as is the case for well-researched issues in the empirical sciences. [ 1 ] [ 16 ] Some theorists give a very wide definition of logical reasoning that includes its role as a cognitive skill responsible for high-quality thinking.
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [5] the zeroes of a function; whether the indefinite integral of a function is also in the class. [6] Of course, some subclasses of these problems are decidable.
Problems 1, 2, 5, 6, [a] 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [b] unresolved. Problems 4 and 23 are considered as too vague to ever be described as solved; the withdrawn 24 would also be in ...
Representation of the ordinal numbers up to .Each turn of the spiral represents one power of .Transfinite induction requires proving a base case (used for 0), a successor case (used for those ordinals which have a predecessor), and a limit case (used for ordinals which don't have a predecessor).
In this case the problem reduces to n − 2 people and n − 2 hats, because P 1 received h i ' s hat and P i received h 1 's hat, effectively putting both out of further consideration. For each of the n − 1 hats that P 1 may receive, the number of ways that P 2 , ..., P n may all receive hats is the sum of the counts for the two cases.
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...