Search results
Results from the WOW.Com Content Network
In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form y = a x k {\displaystyle y=ax^{k}} – appear as straight lines in a log–log graph, with the exponent corresponding to ...
The top left graph is linear in the X- and Y-axes, and the Y-axis ranges from 0 to 10. A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis.
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
Both axes are in logarithmic scale The roofline model is an intuitive visual performance model used to provide performance estimates of a given compute kernel or application running on multi-core , many-core , or accelerator processor architectures , by showing inherent hardware limitations, and potential benefit and priority of optimizations .
The -axis of the magnitude plot is logarithmic and the magnitude is given in decibels, i.e., a value for the magnitude | | is plotted on the axis at | |. The Bode phase plot is the graph of the phase , commonly expressed in degrees, of the argument function arg ( H ( s = j ω ) ) {\displaystyle \arg \left(H(s=j\omega )\right)} as a ...
Arrhenius plots are often used to analyze the effect of temperature on the rates of chemical reactions. For a single rate-limited thermally activated process, an Arrhenius plot gives a straight line, from which the activation energy and the pre-exponential factor can both be determined.
Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1. A wide variety of sigmoid functions including the logistic and hyperbolic tangent functions have been used as the activation function of artificial neurons.
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.