enow.com Web Search

  1. Ad

    related to: hypotrochoid in geometry equation solver pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Hypotrochoid - Wikipedia

    en.wikipedia.org/wiki/Hypotrochoid

    The red curve is a hypotrochoid drawn as the smaller black circle rolls around inside the larger blue circle (parameters are R = 5, r = 3, d = 5).. In geometry, a hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.

  3. File:High School Geometry Problem Solving.pdf - Wikipedia

    en.wikipedia.org/wiki/File:High_School_Geometry...

    English: Supplemental material for the High School Geometry Wikibook, providing teachers with additional activities, puzzles, and games to allow for additional problem solving opportunities. Date 7 December 2009

  4. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot. In some contexts, parametric equations involving only rational functions (that is fractions of two polynomials) are preferred, if they exist.

  5. Deltoid curve - Wikipedia

    en.wikipedia.org/wiki/Deltoid_curve

    In geometry, a deltoid curve, also known as a tricuspoid curve or Steiner curve, is a hypocycloid of three cusps. In other words, it is the roulette created by a point on the circumference of a circle as it rolls without slipping along the inside of a circle with three or one-and-a-half times its radius .

  6. Hypocycloid - Wikipedia

    en.wikipedia.org/wiki/Hypocycloid

    The hypocycloid is a special kind of hypotrochoid, which is a particular kind of roulette. A hypocycloid with three cusps is known as a deltoid. A hypocycloid curve with four cusps is known as an astroid. The hypocycloid with two "cusps" is a degenerate but still very interesting case, known as the Tusi couple.

  7. Centered trochoid - Wikipedia

    en.wikipedia.org/wiki/Centered_trochoid

    An epitrochoid (red) with fixed circle's radius R = 3, rolling circle's radius r = 1 and distance d = 1/2 from the rolling circle's center to the generating point A hypotrochoid (red) with R = 5, r = 3, d = 5. In geometry, a centered trochoid is the roulette formed by a circle rolling along another circle. That is, it is the path traced by a ...

  8. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  9. Spirograph - Wikipedia

    en.wikipedia.org/wiki/Spirograph

    Spirograph is a geometric drawing device that produces mathematical roulette curves of the variety technically known as hypotrochoids and epitrochoids.The well-known toy version was developed by British engineer Denys Fisher and first sold in 1965.

  1. Ad

    related to: hypotrochoid in geometry equation solver pdf