Search results
Results from the WOW.Com Content Network
For example, so-called secondary muons, created by cosmic rays hitting the atmosphere, can penetrate the atmosphere and reach Earth's land surface and even into deep mines. Because muons have a greater mass and energy than the decay energy of radioactivity, they are not produced by radioactive decay .
The majority of the muons continue to bond with other hydrogen isotopes and continue fusing nuclei together. However, not all of the muons are recycled: some bond with other debris emitted following the fusion of the nuclei (such as alpha particles and helions), removing the muons from the catalytic process. This gradually chokes off the ...
muon capture, which pervades at depths a few meters below the subsurface because muons are inherently less reactive; in some cases, high-energy muons can reach greater depths [7] neutron capture , which due to the neutron's low energy are captured into a nucleus, most commonly by water, [ clarification needed ] but this process is highly ...
Since muons are much more deeply penetrating than X-rays, muon tomography can be used to image through much thicker material than x-ray based tomography such as CT scanning. The muon flux at the Earth's surface is such that a single muon passes through an area the size of a human hand per second. [1]
The heavier muons and taus will rapidly change into electrons and neutrinos through a process of particle decay: the transformation from a higher mass state to a lower mass state. Thus electrons are stable and the most common charged lepton in the universe , whereas muons and taus can only be produced in high-energy collisions (such as those ...
Muonium is usually studied by muon spin rotation, in which the muonium atom's spin precesses in a magnetic field applied transverse to the muon spin direction (since muons are typically produced in a spin-polarized state from the decay of pions), and by avoided level crossing (ALC), which is also called level crossing resonance (LCR). [5]
Others decay into photons, subsequently producing electromagnetic cascades. Hence, next to photons, electrons and positrons usually dominate in air showers. These particles as well as muons can be easily detected by many types of particle detectors, such as cloud chambers, bubble chambers, water-Cherenkov, or scintillation detectors. The ...
Other muonic atoms can be formed when negative muons interact with ordinary matter. [4] The muon in muonic atoms can either decay or get captured by a proton. Muon capture is very important in heavier muonic atoms, but shortens the muon's lifetime from 2.2 μs to only 0.08 μs. [4]