Search results
Results from the WOW.Com Content Network
More precisely, the term magnetic moment normally refers to a system's magnetic dipole moment, which produces the first term in the multipole expansion [note 1] of a general magnetic field. Both the torque and force exerted on a magnet by an external magnetic field are proportional to that magnet's magnetic moment.
The force on a current carrying wire is similar to that of a moving charge as expected since a current carrying wire is a collection of moving charges. A current-carrying wire feels a force in the presence of a magnetic field. The Lorentz force on a macroscopic current is often referred to as the Laplace force.
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
A magnet is a material or object that produces a magnetic field.This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.
Lorentz force acting on fast-moving charged particles in a bubble chamber.Positive and negative charge trajectories curve in opposite directions. In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields.
where is the magnetic force constant from the Biot–Savart law, / is the total force on either wire per unit length of the shorter (the longer is approximated as infinitely long relative to the shorter), is the distance between the two wires, and , are the direct currents carried by the wires.
The Lorentz force law gives the force upon a body with charge due to electric and magnetic fields: = (+), where is the electromagnetic force, is the electric field at the body's location, is the magnetic field, and is the velocity of the particle.
Paramagnetic materials have a weak induced magnetization in a magnetic field, which disappears when the magnetic field is removed. Ferromagnetic and ferrimagnetic materials have strong magnetization in a magnetic field, and can be magnetized to have magnetization in the absence of an external field, becoming a permanent magnet. Magnetization is ...