Search results
Results from the WOW.Com Content Network
A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5] A linear system may behave in any one of three possible ways: The system has infinitely many solutions.
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
The cost of solving a system of linear equations is approximately floating-point operations if the matrix has size . This makes it twice as fast as algorithms based on QR decomposition , which costs about 4 3 n 3 {\textstyle {\frac {4}{3}}n^{3}} floating-point operations when Householder reflections are used.
For example, when solving a system of linear equations =, the matrix A can be decomposed via the LU decomposition. The LU decomposition factorizes a matrix into a lower triangular matrix L and an upper triangular matrix U .
Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point.
The characteristic linear system of a family of curves on an algebraic surface Y for a curve C in the family is a linear system formed by the curves in the family that are infinitely near C. [ 4 ] In modern terms, it is a subsystem of the linear system associated to the normal bundle to C ↪ Y {\displaystyle C\hookrightarrow Y} .