enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron microscope - Wikipedia

    en.wikipedia.org/wiki/Electron_microscope

    Reproduction of an early electron microscope constructed by Ernst Ruska in the 1930s. Many developments laid the groundwork of the electron optics used in microscopes. [2] One significant step was the work of Hertz in 1883 [3] who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam.

  3. Transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Transmission_electron...

    Operating principle of a transmission electron microscope. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid.

  4. Scanning electron microscope - Wikipedia

    en.wikipedia.org/wiki/Scanning_electron_microscope

    An account of the early history of scanning electron microscopy has been presented by McMullan. [2] [3] Although Max Knoll produced a photo with a 50 mm object-field-width showing channeling contrast by the use of an electron beam scanner, [4] it was Manfred von Ardenne who in 1937 invented [5] a microscope with high resolution by scanning a very small raster with a demagnified and finely ...

  5. Scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_transmission...

    A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused ...

  6. Everhart–Thornley detector - Wikipedia

    en.wikipedia.org/wiki/Everhart–Thornley_detector

    The E-T secondary electron detector can be used in the SEM's back-scattered electron mode by either turning off the Faraday cage or by applying a negative voltage to the Faraday cage. However, better back-scattered electron images come from dedicated BSE detectors rather than from using the E–T detector as a BSE detector.

  7. High-resolution transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/High-resolution...

    High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. [ 1 ] [ 2 ] It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp 2 -bonded carbon (e.g ...

  8. Electron crystallography - Wikipedia

    en.wikipedia.org/wiki/Electron_crystallography

    In the early 1980s the resolution of electron microscopes was now sufficient to resolve the atomic structure of materials, for instance with the 600 kV instrument led by Vernon Cosslett, [41] so combinations of high-resolution transmission electron microscopy and diffraction became standard across many areas of science. [42]

  9. Annular dark-field imaging - Wikipedia

    en.wikipedia.org/wiki/Annular_dark-field_imaging

    Annular dark-field imaging is a method of mapping samples in a scanning transmission electron microscope (STEM). These images are formed by collecting scattered electrons with an annular dark-field detector. [1] Conventional TEM dark-field imaging uses an objective aperture to only collect scattered electrons that pass through.