Search results
Results from the WOW.Com Content Network
The standard establishes a visual identification system for every container that includes a unique serial number (with check digit), the owner, a country code, a size, type and equipment category as well as any operational marks. The register of container owners is managed by the International Container Bureau (BIC).
The final character of a ten-digit International Standard Book Number is a check digit computed so that multiplying each digit by its position in the number (counting from the right) and taking the sum of these products modulo 11 is 0. The digit the farthest to the right (which is multiplied by 1) is the check digit, chosen to make the sum correct.
The check digit (as calculated above) for this sequence is 4. Once you have calculated your check digit, simply map each character in the string to be encoded using the table above as a reference to get the binary map of the bar code; remember to precede the code with "start" and to end it with "stop" For example, to map the string 1234567 with ...
The check digit is computed as follows: Drop the check digit from the number (if it's already present). This leaves the payload. Start with the payload digits. Moving from right to left, double every second digit, starting from the last digit. If doubling a digit results in a value > 9, subtract 9 from it (or sum its digits).
The Damm algorithm is similar to the Verhoeff algorithm.It too will detect all occurrences of the two most frequently appearing types of transcription errors, namely altering a single digit or transposing two adjacent digits (including the transposition of the trailing check digit and the preceding digit).
The check digit is a weighted modulo-103 checksum. It is calculated by summing the start code 'value' to the products of each symbol's 'value' multiplied by its position's weight in the barcode string. The start symbol and first encoded symbol are in position 1. The sum of the products is then reduced modulo 103.
The simplest checksum algorithm is the so-called longitudinal parity check, which breaks the data into "words" with a fixed number n of bits, and then computes the bitwise exclusive or (XOR) of all those words. The result is appended to the message as an extra word.
Verhoeff had the goal of finding a decimal code—one where the check digit is a single decimal digit—which detected all single-digit errors and all transpositions of adjacent digits. At the time, supposed proofs of the nonexistence [6] of these codes made base-11 codes popular, for example in the ISBN check digit.