Search results
Results from the WOW.Com Content Network
Two different tree-decompositions of the same graph. The width of a tree decomposition is the size of its largest set X i minus one. The treewidth tw(G) of a graph G is the minimum width among all possible tree decompositions of G. In this definition, the size of the largest set is diminished by one in order to make the treewidth of a tree ...
A recursive tree is a labeled rooted tree where the vertex labels respect the tree order (i.e., if u < v for two vertices u and v, then the label of u is smaller than the label of v). In a rooted tree, the parent of a vertex v is the vertex connected to v on the path to the root; every vertex has a unique parent, except the root has no parent. [24]
Phylogenetic trees generated by computational phylogenetics can be either rooted or unrooted depending on the input data and the algorithm used. A rooted tree is a directed graph that explicitly identifies a most recent common ancestor (MRCA), [citation needed] usually an inputed sequence that is not represented in the input.
The posterior probability of a tree will be the probability that the tree is correct, given the prior, the data, and the correctness of the likelihood model. MCMC methods can be described in three steps: first using a stochastic mechanism a new state for the Markov chain is proposed. Secondly, the probability of this new state to be correct is ...
A phylogenetic diagram can be rooted or unrooted. A rooted tree diagram indicates the hypothetical common ancestor of the tree. An unrooted tree diagram (a network) makes no assumption about the ancestral line, and does not show the origin or "root" of the taxa in question or the direction of inferred evolutionary transformations. [5]
A split in phylogenetics is a bipartition of a set of taxa, and the smallest unit of information in unrooted phylogenetic trees: each edge of an unrooted phylogenetic tree represents one split, and the tree can be efficiently reconstructed from its set of splits.
It is a spanning tree of a graph G if it spans G (that is, it includes every vertex of G) and is a subgraph of G (every edge in the tree belongs to G). A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that contains no cycle, or as a minimal set of edges that connect all vertices.
Label each split component with a P (a two-vertex split component with multiple edges), an S (a split component in the form of a triangle), or an R (any other split component). While there exist two split components that share a linked pair of virtual edges, and both components have type S or both have type P, merge them into a single larger ...