Search results
Results from the WOW.Com Content Network
Rewrite rules have names, e.g. simplify_conditional_assignment. Each rule has a "match this" and "replace by that" pattern pair separated by -> , in our example, on separate lines for readability. The patterns must correspond to language syntax categories; in this case, both patterns must be of syntax category statement also separated in ...
In web applications, a rewrite engine is a software component that performs rewriting on URLs (Uniform Resource Locators), modifying their appearance. This modification is called URL rewriting . It is a way of implementing URL mapping or routing within a web application .
Formally, a graph rewriting system usually consists of a set of graph rewrite rules of the form , with being called pattern graph (or left-hand side) and being called replacement graph (or right-hand side of the rule). A graph rewrite rule is applied to the host graph by searching for an occurrence of the pattern graph (pattern matching, thus ...
This leads to the idea of rewriting "modulo commutativity" where a term is in normal form if no rules but commutativity apply. [8] Weakly but not strongly normalizing rewrite system [9] The system {b → a, b → c, c → b, c → d} (pictured) is an example of a weakly normalizing but not strongly normalizing system.
A rewrite in computer programming is the act or result of re-implementing a large portion of existing functionality without re-use of its source code. When the rewrite uses no existing code at all, it is common to speak of a rewrite from scratch .
Given a set E of equations between terms, the following inference rules can be used to transform it into an equivalent convergent term rewrite system (if possible): [4] [5] They are based on a user-given reduction ordering (>) on the set of all terms; it is lifted to a well-founded ordering ( ) on the set of rewrite rules by defining (s → t) (l → r) if
A string rewriting system or semi-Thue system is a tuple (,) where . is an alphabet, usually assumed finite. [5] The elements of the set (* is the Kleene star here) are finite (possibly empty) strings on , sometimes called words in formal languages; we will simply call them strings here.
Generalized context-free grammar (GCFG) is a grammar formalism that expands on context-free grammars by adding potentially non-context-free composition functions to rewrite rules. [1] Head grammar (and its weak equivalents) is an instance of such a GCFG which is known to be especially adept at handling a wide variety of non-CF properties of ...