Search results
Results from the WOW.Com Content Network
A honeycomb is called regular if the group of isometries preserving the tiling acts transitively on flags, where a flag is a vertex lying on an edge lying on a face lying on a cell. Every regular honeycomb is automatically uniform. However, there is just one regular honeycomb in Euclidean 3-space, the cubic honeycomb.
Elongated alternated cubic honeycomb; Hexagonal prismatic honeycomb; Triangular prismatic honeycomb; Triangular-hexagonal prismatic honeycomb; Truncated hexagonal prismatic honeycomb; Truncated square prismatic honeycomb; Rhombitriangular-hexagonal prismatic honeycomb; Omnitruncated triangular-hexagonal prismatic honeycomb
In the geometry of hyperbolic 3-space, the order-3-infinite hexagonal honeycomb or (6,3,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,∞}. It has infinitely many hexagonal tiling {6,3} around each edge.
The hexagonal comb of the honey bee has been admired and wondered about from ancient times. The first man-made honeycomb, according to Greek mythology, is said to have been manufactured by Daedalus from gold by lost wax casting more than 3000 years ago. [2]
The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t 0,2,3 {6,3,3}, has truncated tetrahedron, hexagonal prism, and rhombitrihexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.
A cell end composed of two hexagons and two smaller rhombi would actually be .035% (or about one part per 2850) more efficient. This difference is too minute to measure on an actual honeycomb, and irrelevant to the hive economy in terms of efficient use of wax, considering wild comb varies considerably from any mathematical notion of "ideal ...
In general, a honeycomb in n dimensions is an infinite example of a polytope in n + 1 dimensions. Tilings of the plane and close-packed space-fillings of polyhedra are examples of honeycombs in two and three dimensions respectively. A line divided into infinitely many finite segments is an example of an apeirogon.
In three-dimensional hyperbolic geometry, the alternated order-6 hexagonal tiling honeycomb is a uniform compact space-filling tessellation (or honeycomb).As an alternation, with Schläfli symbol h{4,3,6} and Coxeter-Dynkin diagram or , it can be considered a quasiregular honeycomb, alternating triangular tilings and tetrahedra around each vertex in a trihexagonal tiling vertex figure.