enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  3. Skolem's paradox - Wikipedia

    en.wikipedia.org/wiki/Skolem's_paradox

    In mathematical logic and philosophy, Skolem's paradox is the apparent contradiction that a countable model of first-order set theory could contain an uncountable set. The paradox arises from part of the Löwenheim–Skolem theorem ; Thoralf Skolem was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the ...

  4. Uncountably infinite - Wikipedia

    en.wikipedia.org/?title=Uncountably_infinite&...

    From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Uncountable set ...

  5. Jensen's covering theorem - Wikipedia

    en.wikipedia.org/wiki/Jensen's_covering_theorem

    In set theory, Jensen's covering theorem states that if 0 # does not exist then every uncountable set of ordinals is contained in a constructible set of the same cardinality. Informally this conclusion says that the constructible universe is close to the universe of all sets. The first proof appeared in (Devlin & Jensen 1975).

  6. Infinite set - Wikipedia

    en.wikipedia.org/wiki/Infinite_set

    The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. [1] It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.

  7. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably , rather than countably , infinite. [ 1 ]

  8. Uncountable - Wikipedia

    en.wikipedia.org/?title=Uncountable&redirect=no

    This page was last edited on 27 May 2020, at 21:13 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...

  9. Talk:Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Talk:Uncountable_set

    An uncountable set is defined as having "too many" elements to count. This seems incorrect as the notion of "bigness" (or "too many-ness") by definition applies as an absolute to the concept of infinity/infinite sets.