Search results
Results from the WOW.Com Content Network
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
In mathematical logic and philosophy, Skolem's paradox is the apparent contradiction that a countable model of first-order set theory could contain an uncountable set. The paradox arises from part of the Löwenheim–Skolem theorem ; Thoralf Skolem was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the ...
From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Uncountable set ...
In set theory, Jensen's covering theorem states that if 0 # does not exist then every uncountable set of ordinals is contained in a constructible set of the same cardinality. Informally this conclusion says that the constructible universe is close to the universe of all sets. The first proof appeared in (Devlin & Jensen 1975).
The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. [1] It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.
Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably , rather than countably , infinite. [ 1 ]
This page was last edited on 27 May 2020, at 21:13 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...
An uncountable set is defined as having "too many" elements to count. This seems incorrect as the notion of "bigness" (or "too many-ness") by definition applies as an absolute to the concept of infinity/infinite sets.