Search results
Results from the WOW.Com Content Network
The Theil index is a statistic primarily used to measure economic inequality [1] and other economic phenomena, though it has also been used to measure racial segregation. [2] [3] The Theil index T T is the same as redundancy in information theory which is the maximum possible entropy of the data minus the observed entropy.
In statistics, the uncertainty coefficient, also called proficiency, entropy coefficient or Theil's U, is a measure of nominal association. It was first introduced by Henri Theil [ citation needed ] and is based on the concept of information entropy .
For the Theil index also the term "Theil entropy" had been used. This caused confusion. As an example, Amartya Sen commented on the Theil index, "given the association of doom with entropy in the context of thermodynamics, it may take a little time to get used to entropy as a good thing."
A Törnqvist or Törnqvist-Theil price index is the weighted geometric mean of the price relatives using arithmetic averages of the value shares in the two periods as weights. [1] The data used are prices and quantities in two time-periods, (t-1) and (t), for each of n goods which are indexed by i.
The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both).. Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly.
The Atkinson index is defined as: (, …,) = {(=) / (=) / = (,...,) = +where is individual income (i = 1, 2, ..., N) and is the mean income.. In other words, the Atkinson index is the complement to 1 of the ratio of the Hölder generalized mean of exponent 1−ε to the arithmetic mean of the incomes (where as usual the generalized mean of exponent 0 is interpreted as the geometric mean).
The generalized entropy index has been proposed as a measure of income inequality in a population. [1] It is derived from information theory as a measure of redundancy in data. In information theory a measure of redundancy can be interpreted as non-randomness or data compression ; thus this interpretation also applies to this index.