Search results
Results from the WOW.Com Content Network
Orbit of Mars. Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km) (12.673 light minutes), and an eccentricity of 0.0934. [1][2] The planet orbits the Sun in 687 days [3] and travels 9.55 AU in doing so, [4] making the average orbital speed 24 km/s. The eccentricity is greater than that of every other planet ...
Rotation period (astronomy) In astronomy, the rotation period or spin period[1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background ...
Definition of year and seasons. The length of time for Mars to complete one orbit around the Sun in respect to the stars, its sidereal year, is about 686.98 Earth solar days (≈ 1.88 Earth years), or 668.5991 sols. Because of the eccentricity of Mars' orbit, the seasons are not of equal length.
The average duration of the day-night cycle on Mars — i.e., a Martian day — is 24 hours, 39 minutes and 35.244 seconds, [3] equivalent to 1.02749125 Earth days. [4] The sidereal rotational period of Mars—its rotation compared to the fixed stars—is 24 hours, 37 minutes and 22.66 seconds. [4]
Areosynchronous orbit (ASO): A synchronous orbit around the planet Mars with an orbital period equal in length to Mars' sidereal day, 24.6229 hours. Areostationary orbit (AEO): A circular areosynchronous orbit on the equatorial plane and about 17,000 km (10,557 miles) above the surface of Mars. To an observer on Mars this satellite would appear ...
Animation showing the difference between a sidereal day and a solar day. Sidereal time ("sidereal" pronounced / saɪˈdɪəriəl, sə -/ sy-DEER-ee-əl, sə-) is a system of timekeeping used especially by astronomers. Using sidereal time and the celestial coordinate system, it is easy to locate the positions of celestial objects in the night sky.
A sidereal year (/ saɪˈdɪəri.əl /, US also / sɪ -/; from Latin sidus 'asterism, star'), also called a sidereal orbital period, is the time that Earth or another planetary body takes to orbit the Sun once with respect to the fixed stars. Hence, for Earth, it is also the time taken for the Sun to return to the same position relative to ...
For example, the synodic period of the Moon's orbit as seen from Earth, relative to the Sun, is 29.5 mean solar days, since the Moon's phase and position relative to the Sun and Earth repeats after this period. This is longer than the sidereal period of its orbit around Earth, which is 27.3 mean solar days, owing to the motion of Earth around ...