enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stratified randomization - Wikipedia

    en.wikipedia.org/wiki/Stratified_randomization

    Graphic breakdown of stratified random sampling. In statistics, stratified randomization is a method of sampling which first stratifies the whole study population into subgroups with same attributes or characteristics, known as strata, then followed by simple random sampling from the stratified groups, where each element within the same subgroup are selected unbiasedly during any stage of the ...

  3. Simple random sample - Wikipedia

    en.wikipedia.org/wiki/Simple_random_sample

    Simple random sampling merely allows one to draw externally valid conclusions about the entire population based on the sample. The concept can be extended when the population is a geographic area. [4] In this case, area sampling frames are relevant. Conceptually, simple random sampling is the simplest of the probability sampling techniques.

  4. Stratified sampling - Wikipedia

    en.wikipedia.org/wiki/Stratified_sampling

    It can produce a weighted mean that has less variability than the arithmetic mean of a simple random sample of the population. In computational statistics, stratified sampling is a method of variance reduction when Monte Carlo methods are used to estimate population statistics from a known population. [1]

  5. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    A visual representation of selecting a simple random sample. In a simple random sample (SRS) of a given size, all subsets of a sampling frame have an equal probability of being selected. Each element of the frame thus has an equal probability of selection: the frame is not subdivided or partitioned.

  6. List of analyses of categorical data - Wikipedia

    en.wikipedia.org/wiki/List_of_analyses_of...

    Cochran–Mantel–Haenszel statistics; Correspondence analysis; Cronbach's alpha; Diagnostic odds ratio; G-test; Generalized estimating equations; Generalized linear models; Krichevsky–Trofimov estimator; Kuder–Richardson Formula 20; Linear discriminant analysis; Multinomial distribution; Multinomial logit; Multinomial probit; Multiple ...

  7. Randomization - Wikipedia

    en.wikipedia.org/wiki/Randomization

    Randomization is a statistical process in which a random mechanism is employed to select a sample from a population or assign subjects to different groups. [1] [2] [3] The process is crucial in ensuring the random allocation of experimental units or treatment protocols, thereby minimizing selection bias and enhancing the statistical validity. [4]

  8. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    For example, let the design effect, for estimating the population mean based on some sampling design, be 2. If the sample size is 1,000, then the effective sample size will be 500. It means that the variance of the weighted mean based on 1,000 samples will be the same as that of a simple mean based on 500 samples obtained using a simple random ...

  9. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies, different sample sizes may be allocated, such as in stratified surveys or experimental designs with multiple treatment groups.