Search results
Results from the WOW.Com Content Network
In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular ...
Heron's formula. A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths Letting be the semiperimeter of the triangle, the area is [1] It is named after first-century engineer Heron of Alexandria (or Hero) who ...
The real area is 10,000 2 times the area of the shape on the map. Nevertheless, there is no relation between the area and the perimeter of an ordinary shape. For example, the perimeter of a rectangle of width 0.001 and length 1000 is slightly above 2000, while the perimeter of a rectangle of width 0.5 and length 2 is 5. Both areas are equal to 1.
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero- dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of ...
The formula of the area of an equilateral triangle can be obtained by substituting the altitude formula. [7] Another way to prove the area of an equilateral triangle is by using the trigonometric function. The area of a triangle is formulated as the half product of base and height and the sine of an angle. Because all of the angles of an ...
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2] It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the ...
L 2 {\displaystyle {\mathsf {L}}^ {2}} Area is the measure of a region 's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a ...