enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.

  3. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    In the task of estimation of full area of narrow peak-like functions, Simpson's rules are much less efficient than trapezoidal rule. Namely, composite Simpson's 1/3 rule requires 1.8 times more points to achieve the same accuracy as trapezoidal rule. [8] Composite Simpson's 3/8 rule is even less accurate.

  4. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    Suppose that we want to solve the differential equation ′ = (,). The trapezoidal rule is given by the formula + = + ((,) + (+, +)), where = + is the step size. [1]This is an implicit method: the value + appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear.

  5. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.

  6. Truncation error (numerical integration) - Wikipedia

    en.wikipedia.org/wiki/Truncation_error...

    Suppose we have a continuous differential equation ′ = (,), =, and we wish to compute an approximation of the true solution () at discrete time steps ,, …,.For simplicity, assume the time steps are equally spaced:

  7. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    In mathematics and computational science, Heun's method may refer to the improved [1] or modified Euler's method (that is, the explicit trapezoidal rule [2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.

  8. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the third-degree polynomial y ( x ) = 7 x 3 – 8 x 2 – 3 x + 3 , the 2-point Gaussian quadrature rule even returns an exact result.

  9. Adaptive Simpson's method - Wikipedia

    en.wikipedia.org/wiki/Adaptive_Simpson's_method

    The technique is usually much more efficient than composite Simpson's rule since it uses fewer function evaluations in places where the function is well-approximated by a cubic function. Simpson's rule is an interpolatory quadrature rule which is exact when the integrand is a polynomial of degree three or lower.