Search results
Results from the WOW.Com Content Network
The impact of valence theory declined during the 1960s and 1970s as molecular orbital theory grew in usefulness as it was implemented in large digital computer programs. Since the 1980s, the more difficult problems, of implementing valence bond theory into computer programs, have been solved largely, and valence bond theory has seen a ...
In dimethyl ether, the bond angle is 111° and C–O distances are 141 pm. [3] The barrier to rotation about the C–O bonds is low. The bonding of oxygen in ethers, alcohols, and water is similar. In the language of valence bond theory, the hybridization at oxygen is sp 3.
The assumption that a covalent bond is a linear combination of atomic orbitals of just the two bonding atoms is an approximation (see molecular orbital theory), but valence bond theory is accurate enough that it has had and continues to have a major impact on how bonding is understood. [1]
Band theory derives these bands and band gaps by examining the allowed quantum mechanical wave functions for an electron in a large, periodic lattice of atoms or molecules. Band theory has been successfully used to explain many physical properties of solids, such as electrical resistivity and optical absorption , and forms the foundation of the ...
Modern valence bond theory is the application of valence bond theory (VBT) with computer programs that are competitive in accuracy and economy, with programs for the Hartree–Fock or post-Hartree-Fock methods. The latter methods dominated quantum chemistry from the advent of digital computers because they were easier to program. The early ...
Isaac Newton suggests the existence of an aether in the Third Book of Opticks (1st ed. 1704; 2nd ed. 1718): "Doth not this aethereal medium in passing out of water, glass, crystal, and other compact and dense bodies in empty spaces, grow denser and denser by degrees, and by that means refract the rays of light not in a point, but by bending them gradually in curve lines? ...
Valence bond theory; Coulson–Fischer theory Generalized valence bond Modern valence bond theory: Molecular orbital theory; Hartree–Fock method Semi-empirical quantum chemistry methods Møller–Plesset perturbation theory Configuration interaction Coupled cluster Multi-configurational self-consistent field Quantum chemistry composite methods
The generalized valence bond (GVB) is a method in valence bond theory that uses flexible orbitals in the general way used by modern valence bond theory. The method was developed by the group of William A. Goddard, III around 1970. [1] [2]