Search results
Results from the WOW.Com Content Network
Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).
GCSE Bitesize was launched in January 1998, covering seven subjects. For each subject, a one- or two-hour long TV programme would be broadcast overnight in the BBC Learning Zone block, and supporting material was available in books and on the BBC website. At the time, only around 9% of UK households had access to the internet at home.
Laser diffraction analysis is originally based on the Fraunhofer diffraction theory, stating that the intensity of light scattered by a particle is directly proportional to the particle size. [4] The angle of the laser beam and particle size have an inversely proportional relationship, where the laser beam angle increases as particle size ...
[1] [2] [3] The f-number is also known as the focal ratio, f-ratio, or f-stop, and it is key in determining the depth of field, diffraction, and exposure of a photograph. [4] The f-number is dimensionless and is usually expressed using a lower-case hooked f with the format f / N , where N is the f-number.
The dynamical theory of diffraction describes the interaction of waves with a regular lattice. The wave fields traditionally described are X-rays , neutrons or electrons and the regular lattice are atomic crystal structures or nanometer -scale multi-layers or self-arranged systems.
In a digital camera, diffraction effects interact with the effects of the regular pixel grid. The combined effect of the different parts of an optical system is determined by the convolution of the point spread functions (PSF). The point spread function of a diffraction limited circular-aperture lens is simply the Airy disk. The point spread ...
Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. [2] An instrument dedicated to performing such powder measurements is called a powder diffractometer .
Phase retrieval is a key component of coherent diffraction imaging (CDI). In CDI, the intensity of the diffraction pattern scattered from a target is measured. The phase of the diffraction pattern is then obtained using phase retrieval algorithms and an image of the target is constructed.