Ads
related to: example of a word problemeducation.com has been visited by 100K+ users in the past month
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Lesson Plans
Search results
Results from the WOW.Com Content Network
In computational mathematics, a word problem is the problem of deciding whether two given expressions are equivalent with respect to a set of rewriting identities. A prototypical example is the word problem for groups, but there are many other instances as well.
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
The word problem was one of the first examples of an unsolvable problem to be found not in mathematical logic or the theory of algorithms, but in one of the central branches of classical mathematics, algebra. As a result of its unsolvability, several other problems in combinatorial group theory have been shown to be unsolvable as well.
Word problem (mathematics education), a type of textbook exercise or exam question to have students apply abstract mathematical concepts to real-world situations; Word problem (mathematics), a decision problem for algebraic identities in mathematics and computer science; Word problem for groups, the problem of recognizing the identity element ...
Many, if not most, undecidable problems in mathematics can be posed as word problems: determining when two distinct strings of symbols (encoding some mathematical concept or object) represent the same object or not. For undecidability in axiomatic mathematics, see List of statements undecidable in ZFC.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Ads
related to: example of a word problemeducation.com has been visited by 100K+ users in the past month