Search results
Results from the WOW.Com Content Network
The noble gases have also been referred to as inert gases, but this label is deprecated as many noble gas compounds are now known. [6] Rare gases is another term that was used, [ 7 ] but this is also inaccurate because argon forms a fairly considerable part (0.94% by volume, 1.3% by mass) of the Earth's atmosphere due to decay of radioactive ...
This list is sorted by boiling point of gases in ascending order, but can be sorted on different values. "sub" and "triple" refer to the sublimation point and the triple point, which are given in the case of a substance that sublimes at 1 atm; "dec" refers to decomposition. "~" means approximately.
This page provides supplementary data about the noble gases, which were excluded from the main article to conserve space and preserve focus. Oganesson mostly not included due to the amount of research known about it.
Pages in category "Noble gases" The following 14 pages are in this category, out of 14 total. This list may not reflect recent changes. ...
Structure of a noble-gas atom caged within a buckminsterfullerene (C 60) molecule. Noble gases can also form endohedral fullerene compounds where the noble gas atom is trapped inside a fullerene molecule. In 1993, it was discovered that when C 60 is exposed to a pressure of around 3 bar of He or Ne, the complexes He@C 60 and Ne@C 60 are formed ...
Noble gases were not known in 1844 when this classification arrangement was published. Hydrogen, carbon, nitrogen and oxygen were grouped together on account of their occurrence in living things. Phosphorus, sulfur and selenium were characterised as being solid; volatile at an average temperature between 100 degrees and red heat; and ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The noble gases (helium, neon, argon, krypton, xenon and radon) were previously known as 'inert gases' because of their perceived lack of participation in any chemical reactions. The reason for this is that their outermost electron shells (valence shells) are completely filled, so that they have little tendency to gain or lose electrons.