enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joseph J. Rotman - Wikipedia

    en.wikipedia.org/wiki/Joseph_J._Rotman

    An Introduction to Algebraic Topology (1988), Springer-Verlag; ISBN 0-387-96678-1 An Introduction to the Theory of Groups (1995), Springer-Verlag; ISBN 0-387-94285-8 A First Course in Abstract Algebra (2000), Prentice Hall; ISBN 0-13-011584-3

  3. William S. Massey - Wikipedia

    en.wikipedia.org/wiki/William_S._Massey

    William Schumacher Massey (August 23, 1920 [1] – June 17, 2017) was an American mathematician, known for his work in algebraic topology. The Massey product is named for him. He worked also on the formulation of spectral sequences by means of exact couples , and wrote several textbooks, including A Basic Course in Algebraic Topology ( ISBN 0 ...

  4. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    Allen Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. ISBN 0-521-79540-0. A modern, geometrically flavored introduction to algebraic topology. The book is available free in PDF and PostScript formats on the author's homepage. Kainen, P. C. (1971). "Weak Adjoint Functors". Mathematische Zeitschrift. 122: 1– 9.

  5. Graduate Studies in Mathematics - Wikipedia

    en.wikipedia.org/wiki/Graduate_Studies_in...

    110 Differential Algebraic Topology: From Stratifolds to Exotic Spheres, Matthias Kreck (2010, ISBN 978-0-8218-4898-2) 111 Ricci Flow and the Sphere Theorem, Simon Brendle (2010, ISBN 978-0-8218-4938-5) 112 Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Fredi Troltzsch (2010, ISBN 978-0-8218-4904-0)

  6. De Rham cohomology - Wikipedia

    en.wikipedia.org/wiki/De_Rham_cohomology

    Vector field corresponding to a differential form on the punctured plane that is closed but not exact, showing that the de Rham cohomology of this space is non-trivial.. In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form ...

  7. Mapping cylinder - Wikipedia

    en.wikipedia.org/wiki/Mapping_cylinder

    In mathematics, specifically algebraic topology, the mapping cylinder [1] of a continuous function between topological spaces and is the quotient = (([,])) / where the denotes the disjoint union, and ~ is the equivalence relation generated by

  8. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .

  9. Mathematical and theoretical biology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_and...

    One founding text is considered to be On Growth and Form ... Algebraic topology and natural vector models for phylogenetic analysis. ... ISBN 0-07-554950-6. ...