enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear matrix inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_matrix_inequality

    In convex optimization, a linear matrix inequality (LMI) is an expression of the form ⁡ ():= + + + + where = [, =, …,] is a real vector,,,, …, are symmetric matrices, is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices .

  3. Finsler's lemma - Wikipedia

    en.wikipedia.org/wiki/Finsler's_lemma

    Finsler's lemma can be used to give novel linear matrix inequality (LMI) characterizations to stability and control problems. [4] The set of LMIs stemmed from this procedure yields less conservative results when applied to control problems where the system matrices has dependence on a parameter, such as robust control problems and control of ...

  4. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program. [4] The converse, however, is not valid: there are positive semidefinite cones that do not admit any second-order cone representation. [ 3 ]

  5. Kalman–Yakubovich–Popov lemma - Wikipedia

    en.wikipedia.org/wiki/Kalman–Yakubovich–Popov...

    It establishes a relation between a linear matrix inequality involving the state space constructs A, B, C and a condition in the frequency domain. The Kalman–Popov–Yakubovich lemma which was first formulated and proved in 1962 by Vladimir Andreevich Yakubovich [ 1 ] where it was stated that for the strict frequency inequality.

  6. Polynomial SOS - Wikipedia

    en.wikipedia.org/wiki/Polynomial_SOS

    To establish whether a form h(x) is SOS amounts to solving a convex optimization problem. Indeed, any h(x) can be written as = {} ′ (+ ()) {} where {} is a vector containing a base for the forms of degree m in x (such as all monomials of degree m in x), the prime ′ denotes the transpose, H is any symmetric matrix satisfying = {} ′ {} and () is a linear parameterization of the linear ...

  7. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Linear programming problems are the simplest convex programs. In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas . [ 1 ] Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively ...