Search results
Results from the WOW.Com Content Network
The study of hair cell regeneration mechanisms in adult zebrafish may be transferable to inducing hair cell regeneration in mammals. The basic structure and function of the fish's inner ear is similar to that of other vertebrates. Mammals share homologous genes with zebrafish that are known to affect inner ear structure and function. [17]
Mammalian cochlear hair cells are of two anatomically and functionally distinct types, known as outer, and inner hair cells. Damage to these hair cells results in decreased hearing sensitivity, and because the inner ear hair cells cannot regenerate, this damage is permanent. [4]
The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2] Strategically positioned on the basilar membrane of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells ...
The hair cells are the primary auditory receptor cells and they are also known as auditory sensory cells, acoustic hair cells, auditory cells or cells of Corti. The organ of Corti is lined with a single row of inner hair cells and three rows of outer hair cells. The hair cells have a hair bundle at the apical surface of the cell.
A study looking at spiral ganglion cell counts compared to hair cell counts in the inner ear of patients who had Meniere's disease found that they maintained more hair cells than spiral ganglion cells. [5] Thus, it could be possible that hydrops affects auditory nerves more than hair cells. [6]
The otolith organs are beds of sensory cells in the inner ear, specifically small patches of hair cells. Overlying the hair cells and their hair bundles is a gelatinous layer and above that layer is the otolithic membrane. [1] The utricle serves to measure horizontal accelerations and the saccule responds to vertical accelerations.
Hair cells send signals down sensory nerve fibers which are interpreted by the brain as motion. In addition to sensing acceleration of the head, the otoliths can help to sense the orientation via gravity's effect on them. When the head is in a normal upright position, the otolith presses on the sensory hair cell receptors. This pushes the hair ...
The inner ear houses the apparatus necessary to change the vibrations transmitted from the outside world via the middle ear into signals passed along the vestibulocochlear nerve to the brain. The hollow channels of the inner ear are filled with liquid, and contain a sensory epithelium that is studded with hair cells. The microscopic "hairs" of ...