Search results
Results from the WOW.Com Content Network
The symmetry group of an n-sided regular polygon is the dihedral group D n (of order 2n): D 2, D 3, D 4, ... It consists of the rotations in C n, together with reflection symmetry in n axes that pass through the center. If n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite ...
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
Any straight-sided digon is regular even though it is degenerate, because its two edges are the same length and its two angles are equal (both being zero degrees). As such, the regular digon is a constructible polygon. [3] Some definitions of a polygon do not consider the digon to be a proper polygon because of its degeneracy in the Euclidean ...
[8] For any two simple polygons of equal area, the Bolyai–Gerwien theorem asserts that the first can be cut into polygonal pieces which can be reassembled to form the second polygon. The lengths of the sides of a polygon do not in general determine its area. [9] However, if the polygon is simple and cyclic then the sides do determine the area ...
A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...
Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both. This list includes these: all 75 nonprismatic uniform polyhedra; a few representatives of the infinite sets of prisms and antiprisms;
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [8] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular decagon, m=5, and it can be divided into 10 rhombs, with ...
There are known to be an infinitude of constructible regular polygons with an even number of sides (because if a regular n-gon is constructible, then so is a regular 2n-gon and hence a regular 4n-gon, 8n-gon, etc.). However, there are only 5 known Fermat primes, giving only 31 known constructible regular n-gons with an odd number of sides.