Search results
Results from the WOW.Com Content Network
The Eckhorn model provided a simple and effective tool for studying small mammal’s visual cortex, and was soon recognized as having significant application potential in image processing. In 1994, Johnson adapted the Eckhorn model to an image processing algorithm, calling this algorithm a pulse-coupled neural network.
ITK was developed with funding from the National Library of Medicine as an open resource of algorithms for analyzing the images of the Visible Human Project. ITK stands for The Insight Segmentation and Registration Toolkit. The toolkit provides leading-edge segmentation and registration algorithms in two, three, and more dimensions. ITK uses ...
A minimum spanning tree (MST) is a minimum-weight, cycle-free subset of a graph's edges such that all nodes are connected. In 2004, Felzenszwalb introduced a segmentation method [4] based on Kruskal's MST algorithm. Edges are considered in increasing order of weight; their endpoint pixels are merged into a region if this doesn't cause a cycle ...
The Point Cloud Library (PCL) is an open-source library of algorithms for point cloud processing tasks and 3D geometry processing, such as occur in three-dimensional computer vision. The library contains algorithms for filtering, feature estimation, surface reconstruction, 3D registration, [5] model fitting, object recognition, and segmentation ...
The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each ...
Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m. Let m be a set of binary labels, and let Θ {\displaystyle \Theta } be a shape parameter( Θ {\displaystyle \Theta } is a shape prior on the labels from a layered ...
As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems (early vision [1]), such as image smoothing, the stereo correspondence problem, image segmentation, object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization.
A simple elastic snake is defined by a set of n points for =, …,, the internal elastic energy term , and the external edge-based energy term .The purpose of the internal energy term is to control the deformations made to the snake, and the purpose of the external energy term is to control the fitting of the contour onto the image.