enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pulse-coupled networks - Wikipedia

    en.wikipedia.org/wiki/Pulse-coupled_networks

    The Eckhorn model provided a simple and effective tool for studying small mammal’s visual cortex, and was soon recognized as having significant application potential in image processing. In 1994, Johnson adapted the Eckhorn model to an image processing algorithm, calling this algorithm a pulse-coupled neural network.

  3. Insight Segmentation and Registration Toolkit - Wikipedia

    en.wikipedia.org/wiki/Insight_Segmentation_and...

    ITK was developed with funding from the National Library of Medicine as an open resource of algorithms for analyzing the images of the Visible Human Project. ITK stands for The Insight Segmentation and Registration Toolkit. The toolkit provides leading-edge segmentation and registration algorithms in two, three, and more dimensions. ITK uses ...

  4. Random walker algorithm - Wikipedia

    en.wikipedia.org/wiki/Random_walker_algorithm

    The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each ...

  5. Point Cloud Library - Wikipedia

    en.wikipedia.org/wiki/Point_Cloud_Library

    The Point Cloud Library (PCL) is an open-source library of algorithms for point cloud processing tasks and 3D geometry processing, such as occur in three-dimensional computer vision. The library contains algorithms for filtering, feature estimation, surface reconstruction, 3D registration, [5] model fitting, object recognition, and segmentation ...

  6. Graph cuts in computer vision - Wikipedia

    en.wikipedia.org/wiki/Graph_cuts_in_computer_vision

    As applied in the field of computer vision, graph cut optimization can be employed to efficiently solve a wide variety of low-level computer vision problems (early vision [1]), such as image smoothing, the stereo correspondence problem, image segmentation, object co-segmentation, and many other computer vision problems that can be formulated in terms of energy minimization.

  7. Segmentation-based object categorization - Wikipedia

    en.wikipedia.org/wiki/Segmentation-based_object...

    Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m. Let m be a set of binary labels, and let Θ {\displaystyle \Theta } be a shape parameter( Θ {\displaystyle \Theta } is a shape prior on the labels from a layered ...

  8. Minimum spanning tree-based segmentation - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree...

    Image segmentation strives to partition a digital image into regions of pixels with similar properties, e.g. homogeneity. [1] The higher-level region representation simplifies image analysis tasks such as counting objects or detecting changes, because region attributes (e.g. average intensity or shape [2]) can be compared more readily than raw ...

  9. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Given an input image, R-CNN begins by applying selective search to extract regions of interest (ROI), where each ROI is a rectangle that may represent the boundary of an object in image. Depending on the scenario, there may be as many as two thousand ROIs. After that, each ROI is fed through a neural network to produce output features.

  1. Related searches pcnn image segmentation algorithm c++ pdf format template code html

    pcnn image segmentation algorithm c++ pdf format template code html and css