Search results
Results from the WOW.Com Content Network
Case-hardening or carburization is the process of introducing carbon to the surface of a low-carbon iron, or more commonly a low-carbon steel object, in order to harden the surface. Iron which has a carbon content greater than ~0.02% is known as steel .
This also inversely affects the depth of the case; i.e., a high carbon steel will form a hard, but shallow case. [ 14 ] A similar process is the trademarked "Nu-Tride" process, also known incorrectly as the "Kolene" process (which is the company's name), includes a preheat and an intermediate quench cycle.
Carburization can be used to increase the surface hardness of low carbon steel. [3] Early carburization used a direct application of charcoal packed around the sample to be treated (initially referred to as case hardening), but modern techniques use carbon-bearing gases or plasmas (such as carbon dioxide or methane). The process depends ...
Quench polish quench (QPQ) is a specialized type of nitrocarburizing case hardening that increases corrosion resistance. It is sometimes known by the brand name of Tufftride, Tenifer or Melonite. [1] Three steps are involved: nitrocarburize ("quench"), polish, and post-oxidize ("quench"). [2]
Frequently, the term "hardening" is associated with tempered steel. Both processes are used hand in hand when hardening steel. The two part process begins with hardening the steel so that it becomes hard and does not wear over time. However, very often, this process leaves the steel very brittle and susceptible to breaking during use.
Case hardening processes harden only the exterior of the steel part, creating a hard, wear-resistant skin (the "case") but preserving a tough and ductile interior. Carbon steels are not very hardenable meaning they can not be hardened throughout thick sections. Alloy steels have a better hardenability, so they can be through-hardened and do not ...
The SAE steel grades system is a standard alloy numbering system (SAE J1086 – Numbering Metals and Alloys) for steel grades maintained by SAE International. In the 1930s and 1940s, the American Iron and Steel Institute (AISI) and SAE were both involved in efforts to standardize such a numbering system for steels.
Characteristic Yield Case: R: Steel for rail use: Minimum Yield Case: H: High Tensile Strength Flat products: Minimum Yield Case: If followed by T then the given mechanical property is minimum tensile strength D: Flat Products for Cold Forming: Followed by C, D or X and two numbers characterising steel T: Tinmill Products: Nominal Yield Case: M ...