Search results
Results from the WOW.Com Content Network
Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").
Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1] Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science ...
Code cleanup can also refer to the removal of all computer programming from source code, or the act of removing temporary files after a program has finished executing. For instance, in a web browser such as Chrome browser or Maxthon , code must be written in order to clean up files such as cookies and storage. [ 6 ]
Data wrangling can benefit data mining by removing data that does not benefit the overall set, or is not formatted properly, which will yield better results for the overall data mining process. An example of data mining that is closely related to data wrangling is ignoring data from a set that is not connected to the goal: say there is a data ...
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
Get breaking news and the latest headlines on business, entertainment, politics, world news, tech, sports, videos and much more from AOL
Don't repeat yourself" (DRY), also known as "duplication is evil", is a principle of software development aimed at reducing repetition of information which is likely to change, replacing it with abstractions that are less likely to change, or using data normalization which avoids redundancy in the first place.
Dirty data, also known as rogue data, [1] are inaccurate, incomplete or inconsistent data, especially in a computer system or database. [ 2 ] Dirty data can contain such mistakes as spelling or punctuation errors, incorrect data associated with a field, incomplete or outdated data, or even data that has been duplicated in the database.