Search results
Results from the WOW.Com Content Network
The acoustic wave travels across the surface of the device substrate to the other interdigitated transducer, converting the wave back into an electric signal by the piezoelectric effect. Any changes that were made to the mechanical wave will be reflected in the output electric signal.
Experimental image of surface acoustic waves on a crystal of tellurium oxide [1]. A surface acoustic wave (SAW) is an acoustic wave traveling along the surface of a material exhibiting elasticity, with an amplitude that typically decays exponentially with depth into the material, such that they are confined to a depth of about one wavelength.
An EMAT ultrasonic transducer (UT) shown with a conventional piezoelectric UT. An electromagnetic acoustic transducer (EMAT) is a transducer for non-contact acoustic wave generation and reception in conducting materials. Its effect is based on electromagnetic mechanisms, which do not need direct coupling with the surface of the material. Due to ...
Surface acoustic wave gas sensor or surface acoustic wave (SAW) sensors consist of an input transducer, a chemically adsorbent polymer film, and an output transducer on a piezoelectric substrate, which is typically made of quartz.
An interdigital transducer (IDT) is a device that consists of two interlocking comb-shaped arrays of metallic electrodes (in the fashion of a zipper). These metallic electrodes are deposited on the surface of a piezoelectric substrate , such as quartz or lithium niobate , to form a periodic structure.
The term 'acousto-electronics' is often understood in a wider sense to include numerous practical applications of the interactions of electro-magnetic fields with acoustic waves in solids. In particular, these are signal processing devices using surface acoustic waves (SAW), different sensors of temperature, pressure, humidity, acceleration, etc.
A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. [1] Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities (energy, force, torque, light, motion, position, etc.).
A thin-film bulk acoustic resonator (FBAR or TFBAR) is a device consisting of a piezoelectric material manufactured by thin film methods between two conductive – typically metallic – electrodes and acoustically isolated from the surrounding medium.