enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Archaea - Wikipedia

    en.wikipedia.org/wiki/Archaea

    Archaea exhibit a great variety of chemical reactions in their metabolism and use many sources of energy. These reactions are classified into nutritional groups, depending on energy and carbon sources. Some archaea obtain energy from inorganic compounds such as sulfur or ammonia (they are chemotrophs).

  3. Biological carbon fixation - Wikipedia

    en.wikipedia.org/wiki/Biological_carbon_fixation

    This is known as carbon isotope discrimination and results in carbon-12 to carbon-13 ratios in the plant that are higher than in the free air. Measurement of this isotopic ratio is important in the evaluation of water use efficiency in plants, [32] [33] [34] and also in assessing the possible or likely sources of carbon in global carbon cycle ...

  4. Marine microorganisms - Wikipedia

    en.wikipedia.org/wiki/Marine_microorganisms

    Archaea use more energy sources than eukaryotes: these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. Salt-tolerant archaea (the Haloarchaea) use sunlight as an energy source, and other species of archaea fix carbon; however, unlike plants and cyanobacteria, no known

  5. Microbial loop - Wikipedia

    en.wikipedia.org/wiki/Microbial_loop

    The aquatic microbial loop is a marine trophic pathway which incorporates dissolved organic carbon into the food chain.. The microbial loop describes a trophic pathway where, in aquatic systems, dissolved organic carbon (DOC) is returned to higher trophic levels via its incorporation into bacterial biomass, and then coupled with the classic food chain formed by phytoplankton-zooplankton-nekton.

  6. Marine prokaryotes - Wikipedia

    en.wikipedia.org/wiki/Marine_prokaryotes

    Archaea use more energy sources than eukaryotes: these range from organic compounds, such as sugars, to ammonia, metal ions or even hydrogen gas. Salt-tolerant archaea (the Haloarchaea) use sunlight as an energy source, and other species of archaea fix carbon; however, unlike plants and cyanobacteria, no known

  7. Chemotroph - Wikipedia

    en.wikipedia.org/wiki/Chemotroph

    [10] Iron has many existing roles in biology not related to redox reactions; examples include iron–sulfur proteins, hemoglobin, and coordination complexes. Iron has a widespread distribution globally and is considered one of the most abundant in the Earth's crust, soil, and sediments. [11] Iron is a trace element in marine environments. [11]

  8. Methanosarcina - Wikipedia

    en.wikipedia.org/wiki/Methanosarcina

    In 1985, Shimizu Construction developed a bioreactor that uses Methanosarcina to treat waste water from food processing plants and paper mills. The water is fed into the reactor where the microbes break down the waste particulate. The methane produced by the archaea is then used to power the reactor, making it cheap to run.

  9. Carbon-based life - Wikipedia

    en.wikipedia.org/wiki/Carbon-based_life

    The carbon cycle is a biogeochemical cycle that is important in maintaining life on Earth over a long time span. The cycle includes carbon sequestration and carbon sinks . [ 4 ] [ 5 ] Plate tectonics are needed for life over a long time span, and carbon-based life is important in the plate tectonics process. [ 6 ]