Search results
Results from the WOW.Com Content Network
A circadian rhythm (/ s ər ˈ k eɪ d i ə n /), or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism (i.e., endogenous ) and responds to the environment (is entrained by the environment).
The best studied rhythm in chronobiology is the circadian rhythm, a roughly 24-hour cycle shown by physiological processes in all these organisms. The term circadian comes from the Latin circa, meaning "around" and dies, "day", meaning "approximately a day." It is regulated by circadian clocks.
A circadian rhythm is an entrainable, endogenous, biological activity that has a period of roughly twenty-four hours. This internal time-keeping mechanism is centralized in the suprachiasmatic nucleus (SCN) of humans, and allows for the internal physiological mechanisms underlying sleep and alertness to become synchronized to external environmental cues, like the light-dark cycle. [4]
These variants occur near genes known to be important in photoreception and circadian rhythms. [37] The variant most strongly associated with chronotype occurs near RGS16, which is a regulator of G-protein signalling and has a known role in circadian rhythms. In mice, gene ablation of Rgs16 lengthens the circadian period of behavioural rhythm.
In vertebrates, the master circadian clock is contained within the suprachiasmatic nucleus (SCN), a bilateral nerve cluster of about 20,000 neurons. [10] [11] The SCN itself is located in the hypothalamus, a small region of the brain situated directly above the optic chiasm, where it receives input from specialized photosensitive ganglion cells in the retina via the retinohypothalamic tract.
Chronobiology comes from the ancient Greek χρόνος (chrónos, meaning "time"), and biology, which pertains to the study, or science, of life. The related terms chronomics and chronome have been used in some cases to describe either the molecular mechanisms involved in chronobiological phenomena or the more quantitative aspects of ...
Biological rhythms are endogenous; they persist even in the absence of environmental cues as they are driven by an internal mechanism, most notably the circadian clock. Of the several possible cues (known as zeitgebers, German for 'time-givers') that can contribute to entrainment of the circadian clock, light has the greatest impact.
Circadian disruption is a brief or long period of interference within a circadian rhythm. Chronodisturbance is the disruption of a circadian rhythm which leads to adaptive changes, leading to a less substantial negative impact in comparison to chronodisruption, which leads to disease. [40] Another notable researcher in the field is Mary E ...