enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kutta condition - Wikipedia

    en.wikipedia.org/wiki/Kutta_condition

    In irrotational, inviscid, incompressible flow (potential flow) over an airfoil, the Kutta condition can be implemented by calculating the stream function over the airfoil surface. [ 8 ] [ 9 ] The same Kutta condition implementation method is also used for solving two dimensional subsonic (subcritical) inviscid steady compressible flows over ...

  3. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...

  4. Hamiltonian fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_fluid_mechanics

    Take the simple example of a barotropic, inviscid vorticity-free fluid. Then, the conjugate fields are the mass density field ρ and the velocity potential φ. The Poisson bracket is given by {(), ()} = and the Hamiltonian by:

  5. Helmholtz's theorems - Wikipedia

    en.wikipedia.org/wiki/Helmholtz's_theorems

    A fluid element that is initially irrotational remains irrotational. Helmholtz's theorems apply to inviscid flows. In observations of vortices in real fluids the strength of the vortices always decays gradually due to the dissipative effect of viscous forces. Alternative expressions of the three theorems are as follows:

  6. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a ...

  7. Laplace equation for irrotational flow - Wikipedia

    en.wikipedia.org/wiki/Laplace_equation_for...

    There are many reasons to study irrotational flow, among them; Many real-world problems contain large regions of irrotational flow. It can be studied analytically. It shows us the importance of boundary layers and viscous forces. It provides us tools for studying concepts of lift and drag.

  8. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...

  9. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    Validity: As it stands, the equation is valid for any inviscid potential flows, irrespective of whether the flow is subsonic or supersonic (e.g. Prandtl–Meyer flow). However in supersonic and also in transonic flows, shock waves can occur which can introduce entropy and vorticity into the flow making the flow rotational.