Search results
Results from the WOW.Com Content Network
1972 — Jacob Bekenstein suggests that black holes have an entropy proportional to their surface area due to information loss effects; 1974 — Stephen Hawking applies quantum field theory to black hole spacetimes and shows that black holes will radiate particles with a black-body spectrum which can cause black hole evaporation
Extremal black hole – black hole with the minimal possible mass that can be compatible with a given charge and angular momentum. Black hole electron – if there were a black hole with the same mass and charge as an electron, it would share many of the properties of the electron including the magnetic moment and Compton wavelength.
The Black Hole Era is defined as "40 < n < 100". In this era, according to the book, organized matter will remain only in the form of black holes. Black holes themselves slowly "evaporate" away the matter contained in them, by the quantum mechanical process of Hawking radiation. By the end of this era, only extremely low-energy photons ...
A black hole is a region of spacetime wherein gravity is so strong that no matter or electromagnetic energy (e.g. light) can escape it. [2] Albert Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. [3] [4] The boundary of no escape is called the event horizon.
A simulated particle collision in the LHC. The safety of high energy particle collisions was a topic of widespread discussion and topical interest during the time when the Relativistic Heavy Ion Collider (RHIC) and later the Large Hadron Collider (LHC)—currently the world's largest and most powerful particle accelerator—were being constructed and commissioned.
For black holes, this manifests as Hawking radiation, and the larger question of how the black hole possesses a temperature is part of the topic of black hole thermodynamics. For accelerating particles, this manifests as the Unruh effect, which causes space around the particle to appear to be filled with matter and radiation.
Black Holes & Time Warps: Einstein's Outrageous Legacy is a 1994 popular science book by physicist Kip Thorne. It provides an illustrated overview of the history and development of black hole theory, from its roots in Newtonian mechanics until the early 1990s.
The supermassive black hole at the core of Messier 87, here shown by an image by the Event Horizon Telescope, is among the black holes in this list. This is an ordered list of the most massive black holes so far discovered (and probable candidates), measured in units of solar masses (M ☉), approximately 2 × 10 30 kilograms.